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On fuzzy spin spaces? 

E PrugoveEki 
Department of Mathematics, University of Toronto, Toronto, Canada M5S 1Al 

Received 4 May 1976, in final form 21 December 1976 

Abstract. The operational meaning of fuzzy measurement of two spin components S, and 
S, is examined. Spectral densities assigning probabilities in each spin state to fuzzy 
simultaneous values of S, and S, are introduced, and their informational completeness is 
examined. 

1. Introduction 

It has been shown recently that after extending the framework of probability theory to 
spaces of fuzzy sample points, it becomes possible to express the quantum mechanical 
state of a system of spinless particles as a probability distribution on fuzzy phase space 
(PrugoveEki 1976a, b, Ali and PrugoveEki 1977). This leads to a formulation of 
quantum statistical mechanics which bears a remarkable resemblance to classical 
statistical mechanics (PrugoveEki 1976~) .  

In this paper, we shall examine how this framework might be extended to include 
spin. We limit our considerations to spin-;, which displays all the essential features of 
the general case. 

To see how fuzzy sample points do result from spin measurements, let us consider 
the prototype of all such measurements, namely the Stern-Gerlach experiment per- 
formed on an atom d. To measure the spin component S, of d when d travels along 
the z axis, the Stern-Gerlach set-up correlates the S, value of d to the position R of its 
centre of mass by passing d through a magnetic field H whose H, component has a 
non-zero gradient pointing in the direction of the positive x axis, while the other two 
components, in principle, could be made constant. If at time t = 0, prior to its passing 
through the magnetic field, d was in the state 

where @-1/2 and are mutually orthogonal internal states corresponding to the 
respective values - f and + f of S,, then upon passing through the field, the state of d at 
time t is (Gottfried 1966, § 19): 

qt = +fz y c u r ( ~ ;  t )Qg(r) .  (1.2) 
5=-1/2 

Thus, if R?:/2 and R?i/2 denote the half-spaces of @ above and below the (y, z )  plane, 
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respectively, and if at time t we detect d in RF), the probability that the value of its spin 
component S, was p equals 

In practice, by choosing t sufficiently large, and the apparatus sufficiently massive, 
one can achieve x’&t) = 1 to a degree of accuracy which can be identified with practical 
certainty. However, it is important to recall that as a consequence of the conservation 
of angular momentum, for any given apparatus x’&5) has an upper limit strictly smaller 
than one regardless of how large t is chosen (Wigner 1952, Araki and Yanase 1960, 
Park 1968). That upper limit can be raised only by increasing the size of the apparatus, 
and therefore the case xi([) = 1 is an asymptotic limit requiring an apparatus of infinite 
size for its realization. 

In accordance with the general definition of a fuzzy sample point (PrugoveEki 
1976a), the pair ( 5 , ~ ; )  constitutes a fuzzy value for S,. The value &(p) of the 
confidence function x; clearly represents a measure of the certainty that when a reading 
5 is obtained the actual value of S, was p. 

Using the spin eigenstates of S,, 

we can introduce a spectral density 

in spin space. Its expectation value 

(1.5) 

for an arbitrary spin state equals the probability that a measurement of S, would yield 
the fuzzy value (5, x;). Obviously, the conventional case of perfectly sharp measure- 
ments is recovered when x;(p) = aEP. 

Let us imagine now that at the same time t we measure also the component S, of 
spin, obtaining for 77 = -4, + i t h e  fuzzy value (7, x:). This simultaneous measurement 
of S, and S, results in values in the sample space 

9x,y = ((5, x;) x (77, x:)l5, 77 = *$I (1.7) 

consisting of four distinct fuzzy values for the pair (Sx, S,)  of spin observables. For 
example, in the Stern-Gerlach experiment, this could be achieved by arranging that not 
only H, but also Hy possess a non-zero gradient in the positive direction of their 
respective axes. However, in this particular measurement set-up, nothing substantially 
new is thus achieved since the net result of the two gradients would be a gradient in some 
new direction II in between the x axis and the y axis. Yet, !he general question arises 
whether there are probability distributions e P s y ( ( ,  7) on YX,, which have the correct 
marginal values (1.6) for S,, as well as the corresponding correct marginal values for S, 
(cf (2.8)-(2.9)). 
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If the sample space 9x,y consists of sharp sample points, i.e. if x;(p)=& and 
~ { ( v )  = atlv, then it is already known that the answer is negative (Margenau and Hill 
1961). In the next section we shall derive necessary and sufficient conditions which the 
confidence functions x;(p) and ~ { ( v )  have to satisfy in order to guarantee the existence 
of such probability distributions. These conditions confirm the result of Margenau and 
Hill for spaces of sharp sample points, but at the same time they reveal a whole class of 
spaces of fuzzy sample points for which the probability distributions satisfying the 
required marginality conditions exist for all spin states +. Consequently, we are able to 
show in § 3 that the simultaneous measurement of S, and S,  can be used, in principle, to 
pinpoint an arbitrary mixed state in spin space, and not just the eigenstates of S, or S,. 
Thus, in this respect the situation is very much the same as with simultaneous 
measurements of position and momentum, although there are also substantial differ- 
ences resulting from the very different nature of the spin spectra on the one hand, and 
the spectra of position and momentum observables on the other. 

2. Spectral densities on the fuzzy spin space &'x,y 

In defining P',, we have required that all the confidence functions are normalized 

c X;(P) = 1, c xgv> = 1 
P Y 

as well as spectrum-normalized (PrugoveEki 1976a) 

c X ; ( d  = 1, X{(V) = 1. 
c 7 

Hence, if the probability of simultaneously measuring the fuzzy values ( 5 , ~ ; )  and 
(77, x { )  for S, and S,, respectively, is to be expressed in terms of a spectral density FgV, 

p3'sy(s, 77) = (+IF*,+), (2.3) 
that density has to satisfy the marginality conditions (PrugoveEki 1976a) 

c Fcq = Fs,, 
11 

where, by analogy with (1 S),  

The reasons for imposing these conditions lie in the essential requirements that 

for arbitrary spin states I+!I E 9. 
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The question now arises whether there exist in the spin Hilbert space 9 positive- 
definite operators 

that satisfy (2.4) and (2.5) in a given fuzzy spin space 9x,y. 

parameters p‘  and p”:  

Fs, 3 0 (2.10) 

For spin-4, all confidence functions in 9x,y can be specified in terms of two 

(2.11) 

(2.12) 

1 *:( + $) = 1 - x i (  - 4) = 1 - /y L( + 2) = xr_( - +) = p l ,  

* :: ( + 4) = 1 - * :( - $) = 1 - x !! ( + 4) = x! ( - 2) - p . 1 - I /  

This is a consequence of (2.1) and (2.2). (Here, as well as in the following, we used the 
abbreviations * for the subscripts f i.) 

Let us set 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

and consequently they are satisfied if and only if 

a++ + a+- = b-+ + b-- = p ’ ,  

a-,  +a-- = b++ + b+- = 1 - p ’ ,  

c++ + c+- = c-+ + c-- = 0. 

(2.17) 

(2.18) 

(2.19) 
After taking into consideration that 

$: = 2-”*($: f $L), 
and using the Hermiticity of Fsq, we easily arrive at 

(+$IFc,$3 = $(ag, + bg,) * Re c,,,, 

(+!&,$!!) = $(ac, - b,) - i Im cg,. 

(2.20) 

(2.21) 

(2.22) 
Now we employ the marginality condition (2.5). This condition is equivalent to the 

relation 

(2.23) 

which by some straightforward algebra is seen to be in its turn equivalent to the 
following set of equations: 

a+++ a-+ + b++ + b-+ = 1, (2.24) 
a,+ + a-, = b,, + b-+, (2.25) 
a+-+a--+ b+-+b-- = 1, (2.26) 

a+-+a-- = b+-+ b--, (2.27) 
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Re(c++ + c-+) = -Re(c+- + c--) = ~ ” - 2 ,  1 

Im(c++ + c-+) = Im(c+- + c--) = 0. 

(2.28) 

(2.29) 

The Hermiticity of F,, requires that a,, and b,, be real. Thus (2.17)-(2.19) and 
(2.24)-(2.29) represents a system of sixteen linear algebraic equations for the sixteen 
real quantities a,,,, b,, Re c, and Im c,,,, 5 , ~  = .ti. These equations are not, however, 
independent, with the result that the values of p r  and p” and of the quantities a--, b-- 
and c-- can be chosen arbitrarily. All the remaining quantities can then be expressed in 
terms of those chosen values: 

(2.30) a++ = a - - + p  -7, 

b,, = b-- + z - p ’ ,  1 (2.31) 

c++ = c - -+p”-2 ,  1 (2.32) 

a*, = ; -aTFi;  b,, = i- bTT; C*, = -c**. (2.33) 

Up to this point we have taken advantage of the Hermiticity of Fs,, but not of its 
positive-definiteness property (2.10). For (2.10) to be true, it is necessary and sufficient 
that the roots of 

(a,c-A)(b&--h)=lc,v12 (2.34) 

I 1  

be non-negative, which in turn is true if and only if the inequalities 

a,, + b,, 3 0, (2.35) 

IC*., l2 s %b,s, (2.36) 

hold for all 5, 77 = ki. 
It is easy to derive from (2.30)-(2.33) that (2.35) is satisfied if and only if 

O s  a-- + b-- s 1. (2.37) 

On the other hand, the four inequalities represented in (2.36) give rise to the following 
necessary and sufficient conditions on a = a--, b = b--, c = c-- and p r ,  prr: 

(2.38) 

(2.39) 

(cI2 s min{ab, (1 - p ’  - a) (p ‘  - b)}, 

(c +p”-i)2smin{(a +p’-i)(b + i - p ’ ) ,  ( i - a ) ( $ - b ) } .  
These conditions, in conjunction with (2.37), imply that 

max{O,~-p’}~asmin(i ,  I-$}, 

max(0, p ’ - i } s  b smin{i, p ’ } ,  

(2.40) 

(2.41) 

The above inequalities (2.38) to (2.41) represent a set of necessary and sufficient 
conditions for the existence of a spectral density F,: to every choice of non-negative 
a, b, complex c and O s p ’ ,  p ” <  1 that satisfies these four inequalities corresponds one 
such spectral density computable from (2.30)-(2.33). 

It is evident that, in general, there is an infinity of spectral densities F, b 0 satisfying 
the marginality conditions (2.4) and (2.5) for various choices of confidence functionsx: 
and x[ in accordance with (2.11) and (2.12), but that such solutions do not exist for 
arbitrary choices of p’  and p” since (2.38) and (2.39) impose restrictions on the 
admissible values of p” for given p’. In particular, it is easily seen that there are no 
solutions for the case of simultaneous sharp values of S, and S,, i.e., when p ’ ~  (0, l}, 
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p ” ~  (0, 1). This is to be expected in the light of the results of Margenau and Hill (1961). 
In fact, when p ’  = 1, we obtain a = c = 0 from (2.38), and then deduce p” = $ by using 
(2.39), while for p’  = 0 we obtain b = c = 0 from (2.38) and again p ” =  4. Because of the 
obviously symmetric roles played by S, and S, in the problem, we infer that p ” ~  (0, 1) 
implies p’  = $. Thus, a perfectly accurate measurement of S, is compatible only with 
complete uncertainty in our information on the values of S,, and vice versa if the 
measured values of S, are sharp. 

3. Informational completeness for spin observables 

Generally speaking, a family of observables is said to be informationally complete with 
respect to a given quantum mechanical state if the probability distribution for those 
observables when the system is in the aforementioned state specifies that state uniquely 
(PrugoveEki 1976d). In the context of spin observables, each spin component S,, along 
some direction n is informationally complete with respect to states represented by the 
eigenvectors of S,, (e.g., S, is informationally complete for spin states represented by 
I& 6 = -2, + 2 ,  and S, with respect to $1, r )  = -;, +$). Yet, S,, is not informationally 
complete globally, i.e., with respect to all spin states. On the other hand, given any pure 
spin state represented by some IC, E 9, it follows from the irreducibility of the represen- 
tation of SU(2) whose infinitesimal generators are S,, S, and S, that there is some 
direction n for which I(, is an eigenvector of S,,. Thus, the family of all spin projections 
S,, certainly is informationally complete. 

The last observation is not, however, as useful as it might seem at first glance from 
the point of view of unambigously determining a given spin state I(, by measuring S,,, 
since in order to use it for that purpose one would have to know the orientation of n 
prior to measurement. Hence it is of interest to examine whether the simultaneous 
(fuzzy) measurement of two spin components, say S, and S,, might lead to global 
informational completeness. Rephrased more precisely, the question posed is whether 
there are spectral densities F, on p,,, such that the equalities 

1 1  

(3.1) 6 r )  = -I +1 Tr(F*,p1) = Tr(F*,p2), 2 ,  2, 

for any two density matrices p1 and p2 in 9 imply that p1 = p2. 
In the preceding section we have computed all spectral densities F, satisfying the 

required positivity and marginality conditions for the case of spin-;. After introducing 
a = p1 - p 2 ,  and rewriting (3.1) in the form 

as,,a++ + cg,a+- + cF,a-+ + b,a-- = Tr(FE,a) = 0, (3.2) 
we see that the question of the eltistence of an informationally complete spectral 
density F, reduces to whether the determinant of the system of the four linear 
equations for a++, . . . , a-- that are represented in (3.2) is zero or not. 

It is easily seen that among spectral densities computed in the preceding section 
there are many for which that determinant is zero, e.g., all those for which c = c--,  and 
therefore also c++, c+- and c-+, are real. We note that in particular this will be the case 
when the measurements of either S, or S, are perfectly accurate, so that either p’  = 1 or 
p” = 1. Furthermore, consider also the relation 
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which defines the spectral density for the Stern-Gerlach experiment treated as in 0 1 to 
accommodate the simultaneous measurement of S, and S,,. It is easy to see that even 
thus re-interpreted, the Stern-Gerlach experiment does not supply any data on I) 
beyond the absolute values of y+ and y-. Hence the corresponding matrices F, do not 
provide a non-vanishing determinant for (3.2). 

Yet, there do exist systems of 2 X 2 matrices F,, satisfying all the conditions of 0 3 for 
which the determinant in question does not vanish. One example of such a system is 
obtained when p‘ = $, p” = 2, a = 6, b = and c = bi. 

Thus, we conclude that the existence of spectral densities F, that guarantee the 
global informational completeness of {S,, S,,} is consistent with the spin formalism. 

References 

Ali S T and PrugoveEki E 1977 J. Math. Phys. 18 219 
Araki H and Yanase M M 1960 Phys. Reo. 120 622 
Gottfried K 1966 Quantum Mechanics vol. 1 (New York, Amsterdam: Benjamin) 
Margenau H and Hill R N 1961 Prog. Theor. Phys. 26 722 
Park J L 1968 Phil. Sci. 35 389 
PrugoveEki E 1976a J. Math. Phys. 17 517 
- 1976b J. Phys. A: Math. Gen. 9 1851 
- 1976c Ann. Phys., N Y  submitted for publication 
- 1976d Inr. J. Theor. Phys. submitted for publication 
Wigner E P 1952 2. Phys. 133 101 


